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We discussed several examples of constrained systems by the Lagrangian method.  The 
key step is to identify the number of degrees of freedom in the problem and find the most 
efficient set of generalized coordinates.  Examining the constraints in the system is often a 
good way to identify the appropriate generalized coordinates.  Writing down the kinetic and 
potential energies in terms of these generalized coordinates is often facilitated by using 
Cartesian or cylindrical or spherical coordinates, and then converting completely to the 
generalized coordinates.   

We did the example of the Atwood machine for a frictionless and inertia-less pulley 
supporting two different masses.  The masses can each move in one dimension (which we 
called x and y), and their motion is constrained because they are on either end of a string of 
fixed length.  The constraint is that the string length is ℓ = 𝑥 + 𝑦 + 𝜋𝜋, where 𝜋 is the radius 
of the pulley.  With this constraint incorporated, the Lagrangian can be written as ℒ(𝑥, �̇�) =
1
2

(𝑚1 + 𝑚2)�̇�2 + (𝑚1 −𝑚2)𝑔𝑥 + 𝑐𝑐𝑐𝑐𝑐.  Note that the constant plays no role in the 

dynamics since it disappears when both of the derivatives (𝜕ℒ
𝜕𝜕

, 𝜕ℒ
𝜕�̇�

) are taken.  The resulting 

equation of motion is �̈� = 𝑔𝑚1−𝑚2
𝑚1+𝑚2

.  Again note that the constraining force (the tension in the 

string) was never mentioned or considered in the process.  The tension is essential to the 
traditional Newton’s second law approach to solving this problem. 

The next example was the problem of a frictionless block sliding down the side of a 
wedge of angle 𝛼 which is sliding horizontally over a frictionless surface.  Because the block 
and wedge are constrained to remain in contact, and the wedge and horizontal surface are 
also constrained to remain in contact, there are really only two degrees of freedom in this 
problem: the displacement of the wedge in the horizontal direction (𝑞2), and the displacement 
of the block down the wedge (𝑞1).  The kinetic and potential energies can be written in terms 
of these coordinates and their time derivatives.  We found that the horizontal component of 
momentum is conserved, and that the block moves down the wedge with a constant 
acceleration that depends of the mass of the block and wedge, as well as the angle 𝛼.  The 
time for the block to reach the bottom of the wedge is just that of a particle moving with 
constant acceleration. 

The rotating bead on a loop problem was then analyzed.  A bead of mass 𝑚 is 
constrained to move on a vertical circular loop of radius 𝜋, and the loop is set into rotation 
about the vertical axis through the loop center, at angular frequency 𝜔.   There is a single 

http://www.physics.umd.edu/deptinfo/facilities/lecdem/services/demos/demosd5/d5-23.htm


2 
 

generalized coordinate 𝜃, which is the angle that the bead makes with respect to the 
vertically-down direction from the center of the loop.  There are two components of velocity 
for the bead, one around the loop (𝑣𝜃 = 𝜋�̇�) and the other around the vertical axis (𝑣𝜑 =

𝜌𝜔 = 𝜋 sin𝜃 𝜔).  The Lagrangian is ℒ�𝜃, �̇�� = 𝑇 − 𝑈 = 𝑚𝑅2

2
��̇�2 + 𝜔2 sin𝜃2� −

𝑚𝑔𝜋(1 − cos 𝜃).  The resulting equation of motion is �̈� = (𝜔2 cos 𝜃 − 𝑔/𝜋) sin𝜃.  This 
cannot be solved in closed form for 𝜃(𝑐).  Note that the equation reduces to the equation of 
motion of a pendulum in the limit 𝜔 → 0. 

Even though we cannot solve this equation for 𝜃(𝑐), we can learn much about the 
possible equilibrium solutions to the equation.  From the in-class demonstration we showed 
that there are several different equilibrium points for the bead while the loop is rotating.  The 
equilibrium points are those special angles 𝜃0 where a particle can be placed with no initial 
velocity �̇� = 0 and will stay there because the acceleration is zero, �̈� = 0.  The zeroes of the 
above equation of motion come from the two terms in the product on the RHS.  The first are 
those for which sin𝜃0 = 0, which include 𝜃0 = 0,𝜋.  The position 𝜃0 = 𝜋 is always 
unstable, while that for 𝜃0 = 0 is stable for low angular velocities 𝜔.  The other equilibrium 
points are given by the zero of the term in parentheses: cos 𝜃0 = 𝑔/𝜔2𝜋.  However, since the 
magnitude of cos 𝜃0 is bounded, this requires a certain minimum angular velocity, or greater, 
to be satisfied: 𝜔 ≥ �𝑔/𝜋.  There are two equilibrium angles in this case: 𝜃0 =
± cos−1(𝑔/𝜔2𝜋), both of which are stable when they exist.  In summary, the angle 𝜃0 = 0 is 
stable for 𝜔 < �𝑔/𝜋, and it bifurcates (becomes unstable) into two other stable points at 
𝜃0 = ± cos−1 𝑔/𝜔2𝜋.  In the limit as 𝜔 → ∞, the angles become 𝜃0 = ±𝜋/2, which is the 
‘outside’ of the circular hoop. 

The final example of this lecture is a block sliding down a slope with friction. We use this 
example to demonstrate the weakness of the Lagrangian mechanics and learn how to make it 
work again by adding additional terms in the Lagrange equation. For a block with mass 𝑚 
sliding down a slope with angle 𝛼, if the friction force is 𝐹𝑟, we have solve this example with 
Newtonian mechanics, and the equation of motion is �̈� = 𝑔 sin𝛼 − 𝐹𝑟

𝑚
 , where 𝑞 is the 

generalized coordinate along the slope. If we use the Lagrangian ℒ = 𝑇 − 𝑈, we cannot 
include the friction force, a non-conservative force. The method to solve this problem is to 
add the friction force as a new term in the generalized force in the Lagrange equation as 
𝜕ℒ
𝜕𝜕
− 𝐹𝑟 = 𝑑

𝑑𝑑
𝜕ℒ
𝜕�̇�

 . This modified Lagrange equation will give the correct equation of motion.  

For more information of the Lagrangian mechanics with non-conservative forces, please 
refer to Section 6.5 of this article: 

http://ice.as.arizona.edu/~dpsaltis/Phys422/chapter6.pdf 

 


